34 research outputs found

    Experimental and analytical evaluation of multi-user beamforming in wireless LANs

    Get PDF
    Adaptive beamforming is a. powerful approach to receive or transmit signals of interest in a spatially selective way in the presence of interference and noise. Recently, there has been renewed interest in adaptive beamforming driven by applications in wireless communications, where multiple-input multiple-output (MEMO) techniques have emerged as one of the key technologies to accommodate the high number of users as well as the increasing demand for new high data rate services. Beamforming techniques promise to increase the spectral efficiency of next generation wireless systems and are currently being incorporated in future industry standards. Although a significant amount of research has focused on theoretical capacity analysis, little is known about the performance of such systems in practice. In thesis, I experimentally and analytically evaluate the performance of adaptive beamforming techniques on the downlink channel of a wireless LAN. To this end. I present the design and implementation of the first multi-user beam-forming system and experimental framework for wireless LANs. Next, I evaluate the benefits of such system in two applications. First, I investigate the potential of beamforming to increase the unicast throughput through spatial multiplexing. Using extensive measurements in an indoor environment, I evaluate the impact of user separation distance, user selection, and user population size on the multiplexing gains of multi-user beamforming. I also evaluate the impact of outdated channel information due to mobility and environmental variation on the multiplexing gains of multi-user beamforming. Further, I investigate the potential of beamforming to eliminate interference at unwanted locations and thus increase spatial reuse. Second, I investigate the potential of adaptive beamforming for efficient wireless multicasting. I address the joint problem of adaptive beamformer design at the PHY layer and client scheduling at the MAC layer by proposing efficient algorithms that are amenable to practical implementation. Next, I present the implementation of the beamforming based multicast system on the WARP platform and compare its performance against that of omni-directional and switched beamforming based multicast. Finally, I evaluate the performance of multicast beamforming under client mobility and infrequent channel feedback, and propose solutions that increase its robustness to channel dynamics

    Towards Adaptive, Self-Configuring Networked Unmanned Aerial Vehicles

    Get PDF
    Networked drones have the potential to transform various applications domains; yet their adoption particularly in indoor and forest environments has been stymied by the lack of accurate maps and autonomous navigation abilities in the absence of GPS, the lack of highly reliable, energy-efficient wireless communications, and the challenges of visually inferring and understanding an environment with resource-limited individual drones. We advocate a novel vision for the research community in the development of distributed, localized algorithms that enable the networked drones to dynamically coordinate to perform adaptive beam forming to achieve high capacity directional aerial communications, and collaborative machine learning to simultaneously localize, map and visually infer the challenging environment, even when individual drones are resource-limited in terms of computation and communication due to payload restrictions

    ODABIR NAJPRIKLADNIJEGA NAČINA BUŠENJA I MINIRANJA UPOTREBOM MADM METODA (STUDIJA SLUČAJA: RUDNIK ŽELJEZA SANGAN, IRAN)

    Get PDF
    Drilling is the first stage of open pit mining that has a considerable effect on the other stages of mining, including blasting, loading, hauling and crushing. An unsuitable drilling pattern may lead to undesirable results such as poor fragmentation, back break and fly rock that not only results in technical and safety issues but also increases the operating cost of the mine. Multi-Attribute Decision-Making (MADM) methods can be useful approaches to select the appropriate drilling pattern among various alternatives, performed previously. This paper aims to select the most proper drilling and blasting pattern for Sangan Iron Mine, Iran. To achieve this, in the first step, rock fragmentation, back break, fly rock, specific charge and specific drilling were considered as the decision criteria and their degree of importance was calculated using the AHP method under a fuzzy environment. Then, TOPSIS and PROMETHEE methods were used to select the most proper alternative. The results of this study show that the drilling pattern with a spacing of 5 m, burden 4 m, hole depth 10 m, and hole diameter 15 cm is the most suitable one. The stemming length and powder factor of the suggested pattern are 2.3 m and 2.6 gr/cm3, respectively.Bušenje je prva faza površinske eksploatacije koja ima znatan utjecaj na ostale faze rudarenja, uključujući miniranje, utovar, transport i drobljenje. Neprimjeren način bušenja može dovesti do nepoželjnih rezultata poput loše fragmentacije, povratnoga loma i odbacivanja stijena, što ne samo da rezultira tehničkim i sigurnosnim problemima, već i povećava operativne troškove rudnika. Metode donošenja odluka s više atributa (MADM) mogu biti korisne za odabir odgovarajućega načina bušenja među raznim prethodno izvedenim alternativama. Cilj je ovoga rada odabrati najpogodniji način bušenja i miniranja za rudnik željeza Sangan, Iran. Da bi se to postiglo, u prvome koraku kao kriteriji za odlučivanje razmatrani su fragmentacija stijena, povratno lomljenje, odbacivanje stijena, specifično punjenje i specifično bušenje, a njihova važnost izračunana je korištenjem AHP metode u neizrazitome okruženju. Zatim su korištene metode TOPSIS i PROMETHEE za odabir najprikladnije alternative. Rezultati ove studije pokazuju da je najprikladniji način bušenja s razmakom od 5 m, opterećenjem od 4 m, dubinom rupe od 10 m i promjerom rupe od 15 cm. Duljina čepa bušotine i specifična potrošnja eksploziva predloženoga uzorka iznose 2,3 m, odnosno 2,6 g/cm3

    Gated Recurrent Units for Blockage Mitigation in mmWave Wireless

    Get PDF
    Millimeter-Wave (mmWave) communication is susceptible to blockages, which can significantly reduce the signal strength at the receiver. Mitigating the negative impacts of blockages is a key requirement to ensure reliable and high throughput mmWave communication links. Previous research on blockage mitigation has introduced several model and protocol based blockage mitigation solutions that focus on one technique at a time, such as handoff to a different base station or beam adaptation to the same base station. In this paper, we address the overarching problem: what blockage mitigation method should be employed? and what is the optimal sub-selection within that method? To address the problem, we developed a Gated Recurrent Unit (GRU) model that is trained using periodically exchanged messages in mmWave systems. We gathered extensive amount of simulation data from a commercially available mmWave simulator, show that the proposed method does not incur any additional communication overhead, and that it achieves outstanding results in selecting the optimal blockage mitigation method with an accuracy higher than 93%. We also show that the proposed method significantly increases the amount of transferred data compared to several other blockage mitigation policies

    Proportional Fair RAT Aggregation in HetNets

    Full text link
    Heterogeneity in wireless network architectures (i.e., the coexistence of 3G, LTE, 5G, WiFi, etc.) has become a key component of current and future generation cellular networks. Simultaneous aggregation of each client's traffic across multiple such radio access technologies (RATs) / base stations (BSs) can significantly increase the system throughput, and has become an important feature of cellular standards on multi-RAT integration. Distributed algorithms that can realize the full potential of this aggregation are thus of great importance to operators. In this paper, we study the problem of resource allocation for multi-RAT traffic aggregation in HetNets (heterogeneous networks). Our goal is to ensure that the resources at each BS are allocated so that the aggregate throughput achieved by each client across its RATs satisfies a proportional fairness (PF) criterion. In particular, we provide a simple distributed algorithm for resource allocation at each BS that extends the PF allocation algorithm for a single BS. Despite its simplicity and lack of coordination across the BSs, we show that our algorithm converges to the desired PF solution and provide (tight) bounds on its convergence speed. We also study the characteristics of the optimal solution and use its properties to prove the optimality of our algorithm's outcomes.Comment: Extended version of the 31st International Teletraffic Congress (ITC 2019) conference pape

    On the Temporal Effects of Mobile Blockers in Urban Millimeter-Wave Cellular Scenarios

    Get PDF
    Millimeter-wave (mmWave) propagation is known to be severely affected by the blockage of the line-of-sight (LoS) path. In contrast to microwave systems, at shorter mmWave wavelengths such blockage can be caused by human bodies, where their mobility within environment makes wireless channel alternate between the blocked and non-blocked LoS states. Following the recent 3GPP requirements on modeling the dynamic blockage as well as the temporal consistency of the channel at mmWave frequencies, in this paper a new model for predicting the state of a user in the presence of mobile blockers for representative 3GPP scenarios is developed: urban micro cell (UMi) street canyon and park/stadium/square. It is demonstrated that the blockage effects produce an alternating renewal process with exponentially distributed non-blocked intervals, and blocked durations that follow the general distribution. The following metrics are derived (i) the mean and the fraction of time spent in blocked/non-blocked state, (ii) the residual blocked/non-blocked time, and (iii) the time-dependent conditional probability of having blockage/no blockage at time t1 given that there was blockage/no blockage at time t0. The latter is a function of the arrival rate (intensity), width, and height of moving blockers, distance to the mmWave access point (AP), as well as the heights of the AP and the user device. The proposed model can be used for system-level characterization of mmWave cellular communication systems. For example, the optimal height and the maximum coverage radius of the mmWave APs are derived, while satisfying the required mean data rate constraint. The system-level simulations corroborate that the use of the proposed method considerably reduces the modeling complexity.Comment: Accepted, IEEE Transactions on Vehicular Technolog

    Distance-1 Constrained Channel Assignment in Single Radio Wireless Mesh Networks

    No full text
    Abstract — This paper addresses channel assignment and random medium access design for single-radio multi-channel mesh networks. Two prior approaches include: (i) designing MAC protocols that dynamically select channels based on local information and (ii) partitioning the mesh into subnetworks with different channels and using 802.11 as the medium access protocol. Both of these approaches suffer from limited throughput improvement; the first approach due to wrong or incomplete channel state information that inherently arises in a multi-hop wireless environment, while the second approach due to high interference within each subnetwork. In this paper, we first introduce D1C-CA, Distance-1 Constrained Channel Assignment. D1C-CA statically assigns channels to a set of links as a function of physical connectivity, contention, and the unique gateway functionality of mesh networks, i.e, all internet (non-local) traffic has a gateway node as its source or destination. To design D1C-CA, we model the channel assignment problem as a new form of graph edge coloring in which edges at distance one are constrained. We prove that the problem is NP-complete and design an efficient heuristic solution for mesh networks. Second, we design an asynchronous control-channel-based MAC protocol that solves multi-channel coordination problems and employs the proposed channel assignment algorithm. Finally, we investigate the performance of our approach through extensive simulations and show considerable performance improvements compared to alternate schemes. I

    Many-Antenna Full-Duplex with Fully Digital and Hybrid Beamforming Radios

    No full text
    Next generation wireless systems are expected to use a very large number of antennas at base stations (BSs). For example, the 3GPP has already included support for up to 128 antenna BSs for sub-6 GHz cellular systems in its standard specifications. The traditional approach to build many-antenna BSs is to connect each antenna element to a separate Tx-Rx RF chain (an architecture referred to as folly digital) . However, it is possible to reduce the cost and power consumption of the BS by connecting each RF chain to an array of antennas by using phased arrays or switched beam antennas (an architecture referred to as hybrid beamforming)

    Max-Min Fair Resource Allocation in HetNets: Distributed Algorithms and Hybrid Architecture

    Get PDF
    We study the resource allocation problem in RAN-level integrated HetNets. This emerging HetNets paradigm allows for dynamic traffic splitting across radio access technologies for each client, and then for aggregating the traffic inside the network to improve the overall resource utilization. We focus on the max-min fair service rate allocation across the clients, and study the properties of the optimal solution. Based on the analysis, we design a low complexity distributed algorithm that tries to achieve max-min fairness. We also design a hybrid network architecture that leverages opportunistic centralized network supervision to augment the distributed solution. We analyze the performance of our proposed algorithms and prove their convergence. We also derive conditions under which the outcome is optimal. When the conditions are not satisfied, we provide constant upper and lower bounds on the optimality gap. Finally, we study the convergence time of our distributed solution and show that leveraging appropriate policies in its design significantly reduces the convergence time. Author(s): Aryafar, Ehsan; Keshavarz-Haddad, Alireza; Joe-Wong, Carlee; et al. Source: 2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2017), 857-869 2017 Document Type: Proceedings Pape
    corecore